Alphab-crystallin-assisted reactivation of glucose-6-phosphate dehydrogenase upon refolding.
نویسندگان
چکیده
Alphab-crystallin, a small heat-shock protein has been shown to prevent the aggregation of other proteins under various stress conditions. We have investigated the role of alphaB-crystallin in the reactivation of denaturant [GdmCl (guanidinium chloride)]-inactivated G6PD (glucose-6-phosphate dehydrogenase). Studies indicate that unfolding and inactivation of G6PD by GdmCl proceeds via formation of a molten globule-like state at low concentrations of GdmCl, which was characterized by having maximum surface hydrophobicity and no catalytic activity. At high concentrations of GdmCl, G6PD was completely unfolded, which upon dilution-induced refolding yielding 35% of original activity. In contrast, no activity was recovered when G6PD was refolded from a molten globule-like state. Interestingly, refolding of completely unfolded G6PD in the presence of alphaB-crystallin resulted in 70% gain of the original activity, indicating that alphaB-crystallin assisted in enhanced refolding of G6PD. Intriguingly, alphaB-crystallin was unable to reactivate G6PD from a molten globule-like state. Size-exclusion chromatography data indicate that alphaB-crystallin-assisted reactivation of completely unfolded G6PD is concomitant with the restoration of the native structure of G6PD. Nonetheless, alphaB-crystallin failed to reactivate G6PD from preformed aggregates. Moreover, methylglyoxal-modified alpha-crystallin, which occurs in aged and diabetic cataract lenses, was less efficient in the reactivation of denaturant inactivated G6PD. Diminished chaperone-like activity of alpha-crystallin due to post-translational modifications may thus result in the accumulation of aggregated/inactivated proteins.
منابع مشابه
REASSOCIATION AND REACTIVATION OF GLUCOSE 6-PHOSPHATE DEHYDROGENASE FROM STREPTOMYCES AUREOFACIENS AFTER DENATURATION BY 6 M UREA
Glucose 6-phosphate dehydrogenase (G6PD) from Streptomyces aureofaciens was purified and denatured in 6 M urea. Denaturation led to complete dissociation of the enzyme into its inactive monomers, 98% loss of the enzyme activity, about 30% decrease in the protein fluorescence and a 10 nm red shift in the emission maximum. Dilution of urea-denatured enzyme resulted in regaining of the enzyme acti...
متن کاملATP-enhanced molecular chaperone functions of the small heat shock protein human alphaB crystallin.
We report direct experimental evidence that human alphaB-crystallin, a member of the small heat shock protein family, actively participates in the refolding of citrate synthase (CS) in vitro. In the presence of 3.5 mM ATP, CS reactivation by alphaB-crystallin was enhanced approximately twofold. Similarly, 3.5 mM ATP enhanced the chaperone activity of alphaB-crystallin on the unfolding and aggre...
متن کاملalpha-crystallin assists the renaturation of glyceraldehyde-3-phosphate dehydrogenase.
alpha-Crystallin, a major lens protein, has many of the properties of a molecular chaperone, but its ability to assist refolding of proteins has been less certain. In the present work it was shown that alpha-crystallin specifically increased the reactivation of guanidine-denatured glyceraldehyde-3-phosphate dehydrogenase with most of the activity being recovered. In the incubation mixture the r...
متن کاملThermodynamics of the folding of D-glyceraldehyde-3-phosphate dehydrogenase assisted by protein disulfide isomerase studied by microcalorimetry.
Thermodynamics of the refolding of denatured D-glyceraldehyde 3-phosphate dehydrogenase (GAPDH) assisted by protein disulfide isomerase (PDI), a molecular chaperone, has been studied by isothermal microcalorimetry at different molar ratios of PDI/GAPDH and temperatures using two thermodynamic models proposed for chaperone-substrate binding and chaperone-assisted substrate folding, respectively....
متن کاملUnfolding and refolding of a quinone oxidoreductase: alpha-crystallin, a molecular chaperone, assists its reactivation.
alpha-Crystallin, a member of the small heat-shock protein family and present in vertebrate eye lens, is known to prevent the aggregation of other proteins under conditions of stress. However, its role in the reactivation of enzymes from their non-native inactive states has not been clearly demonstrated. We have studied the effect of alpha-crystallin on the refolding of zeta-crystallin, a quino...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 391 Pt 2 شماره
صفحات -
تاریخ انتشار 2005